Quantcast

At the quantum level, the forces of magnetism and superconductivity exist in an uneasy relationship. Superconducting materials repel a magnetic field, so to create a superconducting current, the magnetic forces must be strong enough to overcome the natural repulsion and penetrate the body of the superconductor. But there’s a limit: Apply too much magnetic force, and the superconductor’s capability is destroyed.

This relationship is pretty well known. But why it is so remains mysterious. Now physicists at Brown University have documented for the first time a quantum-level phenomenon that occurs to electrons subjected to magnetism in a superconducting material. In a paper published in Physical Review Letters, Vesna Mitrovic, joined by other researchers at Brown and in France, report that at under certain conditions, electrons in a superconducting material form odd, fluctuating magnetic waves. Apply a little more magnetic force, and those fluctuations cease: The electronic magnets form repeated wave-like patterns promoted by superconductivity.

Leave a Reply

Your email address will not be published. Required fields are marked *

*