Quantcast

Scientists at The University of Nottingham are leading an ambitious research project to develop a “re-programmable cell.”

Professor Natalio Krasnogor of the University’s School of Computer Science, who leads the Interdisciplinary Computing and Complex Systems Research Group, said “We are looking at creating a cell’s equivalent to a computer operating system in such a way that a given group of cells could be seamlessly re-programmed to perform any function without needing to modifying its hardware.”

“We are talking about a highly ambitious goal leading to a fundamental breakthrough that will, ultimately, allow us to rapidly prototype, implement and deploy living entities that are completely new and do not appear in nature, adapting them so they perform new useful functions.”

The game-changing technology could substantially accelerate Synthetic Biology research and development, which has been linked to myriad applications — from the creation of new sources of food and environmental solutions to a host of new medical breakthroughs such as drugs tailored to individual patients and the growth of new organs for transplant patients.

The project — Towards a Biological Cell Operating System (AUdACiOuS) — is attempting to go beyond systems biology — the science behind understanding how living organisms work — to give scientists the power to create biological systems. The scientists will start the work by attempting to make e.coli bacteria much more easy to program.

“Currently, each time we need a cell that will perform a certain new function we have to recreate it from scratch which is a long and laborious process. Most people think all we have to do to modify behaviour is to modify a cell’s DNA but it’s not as simple as that — we usually find we get the wrong behaviour and then we are back to square one. If we succeed with this AUdACiOuS project, in five years time, we will be programming bacterial cells in the computer and compiling and storing its program into these new cells so they can readily execute them.

Research partners in the project are The University of Nottingham and The University of Edinburgh in the UK; Arizona State University, Massachusetts Institute of Technology, Michigan State University, New York University, University of California Santa Barbara, University of California, San Francisco in the US; Centro Nacional de Biotecnologia in Spain; and the Weizmann Institute of Science in Israel.

1 Trackback or Pingback

Leave a Reply

Your email address will not be published. Required fields are marked *

*